Affiliation:
1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Abstract
Extreme wave–structure interactions are investigated using second-order diffraction theory. The statistics of surface elevation around a multi-column structure are collected using Monte Carlo-type simulations for severe sea states. Within the footprint of a realistic four-column structure, we find that the presence of the structure can give rise to extreme crest elevations greater than twice those at the same return period in the incident wave field. Much of this extra elevation is associated with the excitation of second-order near-trapped modes. A ‘designer’ incident wave can be defined at each point around the structure for a given sea state as the average input wave to produce extreme crest elevations at a given return period, and we show that this wave can be simply vertically scaled to estimate the response at other return periods.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献