Spiral wave initiation in excitable media

Author:

Zykov V. S.ORCID

Abstract

Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.

Funder

Max Planck Society and the German Center for Cardiovascular Research (DZHK).

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3