Complexity in electro-optic delay dynamics: modelling, design and applications

Author:

Larger Laurent1

Affiliation:

1. Department of Optics P. M. Duffieux, FEMTO-ST Institute, University of Franche-Comté, UMR CNRS 6174, 16 route de Gray, 25030 Besançon cedex, France

Abstract

Nonlinear delay dynamics have found during the last 30 years a particularly prolific exploration area in the field of photonic systems. Besides the popular external cavity laser diode set-ups, we focus in this article on another experimental realization involving electro-optic (EO) feedback loops, with delay. This approach has strongly evolved with the important technological progress made on broadband photonic and optoelectronic devices dedicated to high-speed optical telecommunications. The complex dynamical systems performed by nonlinear delayed EO feedback loop architectures were designed and explored within a huge range of operating parameters. Thanks to the availability of high-performance photonic devices, these EO delay dynamics led also to many successful, efficient and diverse applications, beyond the many fundamental questions raised from the observation of experimental behaviours. Their chaotic motion allowed for a physical layer encryption method to secure optical data, with a demonstrated capability to operate at the typical speed of modern optical telecommunications. Microwave limit cycles generated in similar EO delay oscillators showed significantly improved spectral purity thanks to the use of a very long fibre delay line. Last but not least, a novel brain inspired computational principle has been recently implemented physically in photonics for the first time, again on the basis of an EO delay dynamical system. In this latter emerging application, the computed result is obtained by a proper ‘read-out’ of the complex nonlinear transients emerging from a fixed point, the transient being issued by the injection of the information signal to be processed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3