Affiliation:
1. Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300CA Leiden, The Netherlands
Abstract
The demand on simulation software in astrophysics has dramatically increased over the last decades. This increase is driven by improvements in observational data and computer hardware. At the same time, computers have become more complicated to program due to the introduction of more parallelism and hybrid hardware. To keep up with these developments, much of the software has to be redesigned. In order to prevent the future need to rewrite again when new developments present themselves, the main effort should go into making the software maintainable, flexible and scalable. In this paper, we explain our strategy for coupling elementary solvers and how to combine them into a high-performance multi-scale environment in which complex simulations can be performed. The elementary parts can remain succinct while supporting the aggregation to more satisfactory functionality by coupling them on a higher level. The advanced code-coupling strategies we present here allow such a hierarchy and support the development of complex codes. A library of simple elementary solvers subsequently stimulates the rapid development of more complex code that can co-evolve with the latest advances in computer hardware. We demonstrate how to combine several of these elementary solvers in a hierarchical and generic system, and how the resulting complex codes can be applied to multi-scale problems in astrophysics. Our aim is to achieve the best of several worlds with respect to performance, flexibility and maintainability while reducing development time. We succeeded in the development of the hierarchical coupling strategy and the general framework, but a comprehensive library of minimal fundamental-physics solvers is still unavailable.
This article is part of the theme issue ‘Multiscale modelling, simulation and computing: from the desktop to the exascale’.
Funder
The Netherlands Research School for Astronomy (NOVA), NWO
European Union's Horizon 2020 research and innovation program
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards an Adaptive Treecode for N-body Problems;Journal of Scientific Computing;2020-03
2. Multiscale modelling, simulation and computing: from the desktop to the exascale;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-02-18