Automatic lexical classification: bridging research and practice

Author:

Korhonen Anna1

Affiliation:

1. Computer Laboratory and RCEAL, University of Cambridge, 15 J J Thomson Avenue, Cambridge CB3 0FD, UK

Abstract

Natural language processing (NLP)—the automatic analysis, understanding and generation of human language by computers—is vitally dependent on accurate knowledge about words . Because words change their behaviour between text types, domains and sub-languages, a fully accurate static lexical resource (e.g. a dictionary, word classification) is unattainable. Researchers are now developing techniques that could be used to automatically acquire or update lexical resources from textual data. If successful, the automatic approach could considerably enhance the accuracy and portability of language technologies, such as machine translation, text mining and summarization. This paper reviews the recent and on-going research in automatic lexical acquisition. Focusing on lexical classification, it discusses the many challenges that still need to be met before the approach can benefit NLP on a large scale.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference28 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster Analysis;A Practical Handbook of Corpus Linguistics;2020

2. HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment;Computational Linguistics;2017-12

3. Visions of the future for the Royal Society’s 350th anniversary year;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2010-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3