Affiliation:
1. Departamento de Química Física I (Unidad Asociada de I+D+I al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
2. Instituto de Física Fundamental, CSIC, C/ Serrano, 123, 28006 Madrid, Spain
Abstract
Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump–probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables—the product vibrational, translational and angular distributions—and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available
ab initio
potential-energy surfaces using a four-dimensional model.
This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’.
Funder
Ministerio de Economía y Competitividad,MINECO
COST Action program
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献