Meaning of temperature in different thermostatistical ensembles

Author:

Hänggi Peter12ORCID,Hilbert Stefan3,Dunkel Jörn4ORCID

Affiliation:

1. Institute of Physics, University of Augsburg, Universitätstrasse 1, 86135 Augsburg, Germany

2. Nanosystems Initiative Munich, Schellingstrasse 4, 89799 München, Germany

3. Exzellenzcluster Universe, Boltzmannstrasse 2, 85748 Garching, Germany

4. Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue E17-412, Cambridge, MA 02139-4307, USA

Abstract

Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The ‘mother’ of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative ‘absolute’ temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference36 articles.

1. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie

2. Planck M. 1906 Entropie und Wahrscheinlichkeit Vorlesungen über die Theorie der Wärmestrahlung ch. 4 §136 p. 139. Leipzig Germany: J. A. Barth.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steady-state quantum thermodynamics with synthetic negative temperatures;Physical Review Research;2024-03-22

2. Near-infrared absorption and radiative cooling of naphthalene dimers (C10H8)2;Physical Chemistry Chemical Physics;2024

3. Control of the Schrödinger equation by slow deformations of the domain;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2023-06-07

4. Entropy and temperature in finite isolated quantum systems;Physical Review E;2023-03-16

5. Operational Definition of the Temperature of a Quantum State;Physical Review Letters;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3