Formation of desiccation crack patterns in electric fields: a review

Author:

Tarafdar Sujata1ORCID,Dutta Tapati12

Affiliation:

1. Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032, India

2. Physics Department, St Xavier's College, Kolkata 700016, India

Abstract

Desiccation crack formation is an important and interesting part of the broad area of fracture mechanics. Generation of cracks due to drying depends on ambient conditions, which may include externally applied fields. In this review, we discuss the effect of both direct and alternating electrical fields on desiccation crack formation. After a brief introduction to materials which crack on drying, e.g. colloids, clay and ceramics we discuss how they respond to an electric field. Following that, we present an account of experiments and modelling studies performed on granular pastes or clays drying while exposed to an electric field. Specific patterns formed under different geometries, strengths and frequencies of the electric field are described and explained. The review includes work on cracks formed in clay droplets, where a memory effect has been observed and analysed using a generalized calculus formalism. This article is part of the theme issue ‘Statistical physics of fracture and earthquakes’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3