Factors determining the most efficient spray distribution for marine cloud brightening

Author:

Connolly P. J.1ORCID,McFiggans G. B.1ORCID,Wood R.2,Tsiamis A.3

Affiliation:

1. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

2. Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-160, USA

3. Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3JF, UK

Abstract

We investigate the sensitivity of marine cloud brightening to the properties of the added salt particle distribution using a cloud parcel model, with an aim to address the question of, ‘what is the most efficient particle size distribution that will produce a desired cooling effect?’ We examine the effect that altering the aerosol particle size distribution has on the activation and growth of drops, i.e. the Twomey effect alone, and do not consider macrophysical cloud responses that may enhance or mitigate the Twomey effect. For all four spray generation methods considered, Rayleigh jet ; Taylor cone jet ; supercritical fluid ; and effervescent spray , salt particles within the median dry diameter range D m =30–100 nm are the most effective range of sizes. The Rayleigh jet method is also the most energy efficient overall. We also find that care needs to be taken when using droplet activation parametrizations: for the concentrations considered, Aitken particles do not result in a decrease in the total albedo, as was found in a recent study, and such findings are likely to be a result of the parametrizations' inability to simulate the effect of swollen aerosol particles. Our findings suggest that interstitial aerosol particles play a role in controlling the albedo rather than just the activated cloud drops, which is an effect that the parametrization methods do not consider.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference28 articles.

1. Stern N (ed.) 2007 The economics of climate change. Cambridge UK: Cambridge University Press.

2. Shepherd J (ed.) (2009) Geoengineering the climate: science governance and uncertainty. London UK: The Royal Society.

3. Climatic change special issue: geoengineering research and its limitations

4. Control of global warming?

5. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3