Boosting phase contrast with a grating Bonse–Hart interferometer of 200 nanometre grating period

Author:

Wen Han1,Gomella Andrew A.1,Patel Ajay1,Wolfe Douglas E.2,Lynch Susanna K.1,Xiao Xianghui3,Morgan Nicole1

Affiliation:

1. National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA

2. Materials Science and Engineering Department, Penn State University, State College, PA, USA

3. Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA

Abstract

We report on a grating Bonse–Hart interferometer for phase-contrast imaging with hard X-rays. The method overcomes limitations in the level of sensitivity that can be achieved with the well-known Talbot grating interferometer, and without the stringent spectral filtering at any given incident angle imposed by the classic Bonse–Hart interferometer. The device operates in the far-field regime, where an incident beam is split by a diffraction grating into two widely separated beams, which are redirected by a second diffraction grating to merge at a third grating, where they coherently interfere. The wide separation of the interfering beams results in large phase contrast, and in some cases absolute phase images are obtained. Imaging experiments were performed using diffraction gratings of 200 nm period, at 22.5 keV and 1.5% spectral bandwidth on a bending-magnetic beamline. Novel design and fabrication process were used to achieve the small grating period. Using a slitted incident beam, we acquired absolute and differential phase images of lightly absorbing samples. An advantage of this method is that it uses only phase modulating gratings, which are easier to fabricate than absorption gratings of the same periods.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dark-field tomography of an attenuating object using intrinsic x-ray speckle tracking;Journal of Medical Imaging;2022-02-07

2. Multilayer X-ray interference structures;Physics-Uspekhi;2019-11-01

3. Biomedical X-Ray Phase-Contrast Imaging and Tomography;Springer Handbook of Microscopy;2019

4. ‘Taking X-ray phase contrast imaging into mainstream applications’ and its satellite workshop ‘Real and reciprocal space X-ray imaging’;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2014-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3