𝒫𝒯-symmetric and antisymmetric nonlinear states in a split potential box

Author:

Chen Zhaopin1,Li Yongyao2,Malomed Boris A.13ORCID

Affiliation:

1. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

2. School of Physics and Optoelectronic Engineering, Foshan University, Foshan 52800, People’s Republic of China

3. 1, ITMO University, St. Petersburg 197101, Russia

Abstract

We introduce a one-dimensional -symmetric system, which includes the cubic self-focusing, a double-well potential in the form of an infinitely deep potential box split in the middle by a delta-functional barrier of an effective height ε , and constant linear gain and loss, γ , in each half-box. The system may be readily realized in microwave photonics. Using numerical methods, we construct -symmetric and antisymmetric modes, which represent, respectively, the system’s ground state and first excited state, and identify their stability. Their instability mainly leads to blowup, except for the case of ε =0, when an unstable symmetric mode transforms into a weakly oscillating breather, and an unstable antisymmetric mode relaxes into a stable symmetric one. At ε >0, the stability area is much larger for the -antisymmetric state than for its symmetric counterpart. The stability areas shrink with increase of the total power, P . In the linear limit, which corresponds to , the stability boundary is found in an analytical form. The stability area of the antisymmetric state originally expands with the growth of γ , and then disappears at a critical value of γ . This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 1)’.

Funder

Israel Science Foundation

NSF and Binational (US-Israel) Science Foundation

NNSFC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3