Geometric analysis of synchronization in neuronal networks with global inhibition and coupling delays

Author:

Ryu Hwayeon1ORCID,Campbell Sue Ann2ORCID

Affiliation:

1. Department of Mathematics, University of Hartford, West Hartford, CT 06117, USA

2. Department of Applied Mathematics, Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

We study synaptically coupled neuronal networks to identify the role of coupling delays in network synchronized behaviour. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory population is tightly coupled without time delay. A geometric singular perturbation analysis yields existence and stability conditions for periodic solutions where the excitatory cells are synchronized and different phase relationships between the excitatory and inhibitory populations can occur, along with formulae for the periods of such solutions. In particular, we show that if there are no delays in the coupling, oscillations where the excitatory population is synchronized cannot occur. Numerical simulations are conducted to supplement and validate the analytical results. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.

Funder

University of Hartford Greenberg

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability, bifurcation and phase-locking of time-delayed excitatory-inhibitory neural networks;Mathematical Biosciences and Engineering;2020

2. Nonlinear dynamics of delay systems: an overview;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3