Solid solution formation in the metatorbernite–metazeunerite system (Cu(UO 2 ) 2 (PO 4 ) 2− x (AsO 4 ) x . n H 2 O) and their stability under conditions of variable temperature

Author:

Kulaszewska Joanna1,Dann Sandra1,Warwick Peter1,Kirk Caroline234ORCID

Affiliation:

1. Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK

2. School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK

3. Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, UK

4. Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK

Abstract

Mineral phases which can be thought of as members of a metatorbernite–metazeunerite solid solution (Cu(UO 2 ) 2 (PO 4 ) 2− x (AsO 4 ) x .8H 2 O have been identified in radioactive samples from spoil heaps at the uranium mine site in South Terras, Cornwall (grid reference SW935523) . A complete solid solution (0 <  x  < 2) was synthesized by precipitation from solution using uranium (VI) nitrate and copper (II) chloride and phosphoric acid/arsenic acid in the appropriate molar proportions. Refined unit cell parameters determined by Pawley fitting of powder X-ray diffraction data showed a linear variation in the a unit cell parameter according to Vegard's Law, allowing the composition of the natural mineral phases found at South Terras to be determined from measurement of their unit cell parameters. High-resolution variable-temperature synchrotron powder X-ray diffraction studies were carried out at the Diamond Light Source on three members of this solid solution ( x  = 0, 1, 2) and showed different structural behaviour as a function of composition and temperature. Metatorbenite ( x  = 0) retains its tetragonal symmetry at low temperatures and dehydrates to an amorphous phase at 473 K, whereas metazeunrite ( x  = 2) transforms to an orthorhombic phase at low temperatures, regains its tetragonal symmetry on heating to 323 K and undergoes a further transition to an, as yet, unidentified phase at 473 K. This article is part of the theme issue ‘Fifty years of synchrotron science: achievements and opportunities’.

Funder

Natural Environment Research Council

Diamond Light Source beamtime

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3