A modified split Hopkinson torsional bar system for correlated study of τ – γ relations, shear localization and microstructural evolution

Author:

Yang Rong1,Zhang Husheng1,Shen Letian1,Xu Yongbo2,Bai Yilong1,Dodd Bradley3

Affiliation:

1. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

3. Institute of Shock Physics, Imperial College London, London SW7 2AZ, UK

Abstract

The conventional split Hopkinson torsional bar (SHTB) system consists of two bars, which can successfully produce the data for the construction of dynamic torsional shear stress and strain relationships. However, the system cannot provide reliable information on the progression of the deformed micro-structure during the test. The reverberation of waves in the bars and the tested specimen can spoil the microstructural pattern formed during the effective loading. This paper briefly reviews a modified version of the SHTB system consisting of four bars that has been developed. This modified system can eliminate the reverberation of waves in the specimen and provide only a single rectangular torsional stress pulse, thus it can properly freeze the microstructure formed during the effective period of loading in the specimen. By using the advantage of the modified SHTB system, together with a new design of specimen, it is possible to perform a correlated study of the dynamic stress–strain response, shear localization and the evolution of the microstructure at a fixed view-field (position) on a given specimen during the sequence of the loading time. The principles, experimental set-up and procedure, calibration and some preliminary results of the correlated study are reported in this paper.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3