Hydrogen molecular ions and the violent birth of the Solar System

Author:

Ceccarelli Cecilia1ORCID,Favre Cecile1,López-Sepulcre Ana12,Fontani Francesco3

Affiliation:

1. Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France

2. Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, 38406 Saint-Martin d'Hères, France

3. INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy

Abstract

Many pieces of evidence indicate that the Solar System youth was marked by violent processes: among others, high fluxes of energetic particles (greater than or equal to 10 MeV) are unambiguously recorded in meteoritic material, where an overabundance of the short-lived 10 Be products is measured. Several hypotheses have been proposed to explain from where these energetic particles originate, but there is no consensus yet, mostly because of the scarcity of complementary observational constraints. In general, the reconstruction of the past history of the Solar System is best obtained by simultaneously considering what we know of it and of similar systems nowadays in formation. However, when it comes to studying the presence of energetic particles in young forming stars, we encounter the classical problem of the impossibility of directly detecting them toward the emitting source (analogously to what happens to galactic cosmic rays). Yet, exploiting the fact that energetic particles, such as cosmic rays, create H 3 + and that an enhanced abundance of H 3 + causes dramatic changes on the overall gas chemical composition, we can indirectly estimate the flux of energetic particles. This contribution provides an overview of the search for solar-like protostars permeated by energetic particles and the discovery of a protocluster, OMC-2 FIR4, where the phenomenon is presently occurring. This article is part of a discussion meeting issue ‘Advances in hydrogen molecular ions: H 3 + , H 5 + and beyond’.

Funder

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Organic chemistry in the protosolar analogue HOPS-108: Environment matters;Astronomy & Astrophysics;2022-01

2. Hydrogen molecular ions: H 3 + , H 5 + and beyond;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3