Abstract
Andreev bound states are an expression of quantum coherence between particles and holes in hybrid structures composed of superconducting and non-superconducting metallic parts. Their spectrum carries important information on the nature of the pairing, and determines the current in Josephson devices. Here, I focus on Andreev bound states in systems involving superconductors and ferromagnets with strong spin-polarization. I provide a general framework for non-local Andreev phenomena in such structures in terms of coherence functions, and show how the latter link wave function and Green-function based theories.
This article is part of the theme issue ‘Andreev bound states’.
Funder
Engineering and Physical Science Research Council
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献