Affiliation:
1. Laboratory for Computational Molecular Design, RIKEN QBiC (Quantitative Biology Center), 6F, 1-6-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
Abstract
We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s
−1
for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Raising Compute Density of Molecular Dynamics Simulation Through Approximate Memoization;2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP);2024-07-24
2. FASDA: An FPGA-Aided, Scalable and Distributed Accelerator for Range-Limited Molecular Dynamics;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11
3. Deep-Learning-Assisted Enhanced Sampling for Exploring Molecular Conformational Changes;The Journal of Physical Chemistry B;2023-11-10
4. Dissociation Rate Calculation via Constant-Force Steered Molecular Dynamics Simulation;Journal of Chemical Information and Modeling;2023-05-15
5. Microsecond Simulation in a Special-Purpose Molecular Dynamics Computer Cluster;2023 11th International Conference on Bioinformatics and Computational Biology (ICBCB);2023-04-21