Rethinking arithmetic for deep neural networks

Author:

Constantinides G. A.1ORCID

Affiliation:

1. EEE Department, Imperial College London, London, UK

Abstract

We consider efficiency in the implementation of deep neural networks. Hardware accelerators are gaining interest as machine learning becomes one of the drivers of high-performance computing. In these accelerators, the directed graph describing a neural network can be implemented as a directed graph describing a Boolean circuit. We make this observation precise, leading naturally to an understanding of practical neural networks as discrete functions, and show that the so-called binarized neural networks are functionally complete. In general, our results suggest that it is valuable to consider Boolean circuits as neural networks , leading to the question of which circuit topologies are promising. We argue that continuity is central to generalization in learning, explore the interaction between data coding, network topology, and node functionality for continuity and pose some open questions for future research. As a first step to bridging the gap between continuous and Boolean views of neural network accelerators, we present some recent results from our work on LUTNet, a novel Field-Programmable Gate Array inference approach. Finally, we conclude with additional possible fruitful avenues for research bridging the continuous and discrete views of neural networks. This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance computational science’.

Funder

Imagination Technologies

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference49 articles.

1. Deep Neural Network Approximation for Custom Hardware

2. Scheinberg K. 2016 Evolution of randomness in optimization methods for supervised machine learning. SIAG/OPT views and news (ed. S Wild) vol. 24 pp. 1–7. http://wiki.siam.org/siag-op/index.php/View_and_News.

3. LeCun Y. 1989 Generalization and network design strategies. University of Toronto Technical Report. CRG-TR-89-4.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3