Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task

Author:

Blinowska Katarzyna J.1,Kamiński Maciej1,Brzezicka Aneta2,Kamiński Jan3

Affiliation:

1. Department of Biomedical Physics, Warsaw University, Warsaw, Poland

2. Interdisciplinary Center for Applied Cognitive Studies, Warsaw School of Social Sciences and Humanities, Warsaw, Poland

3. Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland

Abstract

The dynamic pattern of functional connectivity during a working memory task was investigated by means of the short-time directed transfer function. A clear-cut picture of transmissions was observed with the main centres of propagation located in the frontal and parietal regions, in agreement with imaging studies and neurophysiological hypotheses concerning the mechanisms of working memory. The study of the time evolution revealed that most of the time short-range interactions prevailed, whereas the communication between the main centres of activity occurred more sparsely and changed dynamically in time. The patterns of connectivity were quantified by means of a network formalism based on assortative mixing—an approach novel in the field of brain networks study. By means of application of the above method, we have demonstrated the existence of a modular structure of brain networks. The strength of interaction inside the modules was higher than between modules. The obtained results are compatible with theories concerning metabolic energy saving and efficient wiring in the brain, which showed that preferred organization includes modular structure with dense connectivity inside the modules and more sparse connections between the modules. The presented detailed temporal and spatial patterns of propagation are in line with the neurophysiological hypotheses concerning the role of gamma and theta activity in information processing during a working memory task.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3