Mastering the scales: a survey on the benefits of multiscale computing software

Author:

Groen Derek1ORCID,Knap Jaroslaw2,Neumann Philipp3,Suleimenova Diana1,Veen Lourens4,Leiter Kenneth2

Affiliation:

1. Department of Computer Science, Brunel University London, Uxbridge, UK

2. US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA

3. Department of Scientific Computing, University of Hamburg, Hamburg, Germany

4. Netherlands eScience Center, Amsterdam, The Netherlands

Abstract

In the last few decades, multiscale modelling has emerged as one of the dominant modelling paradigms in many areas of science and engineering. Its rise to dominance is primarily driven by advancements in computing power and the need to model systems of increasing complexity. The multiscale modelling paradigm is now accompanied by a vibrant ecosystem of multiscale computing software (MCS) which promises to address many challenges in the development of multiscale applications. In this paper, we define the common steps in the multiscale application development process and investigate to what degree a set of 21 representative MCS tools enhance each development step. We observe several gaps in the features provided by MCS tools, especially for application deployment and the preparation and management of production runs. In addition, we find that many MCS tools are tailored to a particular multiscale computing pattern, even though they are otherwise application agnostic. We conclude that the gaps we identify are characteristic of a field that is still maturing and features that enhance the deployment and production steps of multiscale application development are desirable for the long-term success of MCS in its application fields. This article is part of the theme issue ‘Multiscale modelling, simulation and computing: from the desktop to the exascale’.

Funder

European Union's Horizon 2020 Research and Innovation Programme

Task-based load balancing and auto-tuning in particle simulations

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3