Affiliation:
1. Department of Chemistry and Applied Biosciences, ETH Zurich and Università della Svizzera Italiana, via G. Buffi 13, 6900 Lugano, Switzerland
2. Laboratoire de Chimie et Physique Quantiques—UMR 5626, Toulouse, France
Abstract
The simulation of liquids by
ab initio
molecular dynamics (AIMD) has been a subject of intense activity over the last two decades. The significant increase in computational resources as well as the development of new and efficient algorithms has elevated this method to the status of a standard quantum mechanical tool that is used by both experimentalists and theoreticians. As AIMD computes the electronic structure from first principles, it is free of
ad hoc
parametrizations and has thus been applied to a large variety of physical and chemical problems. In particular, AIMD has provided microscopic insight into the structural and dynamical properties of aqueous solutions which are often challenging to probe experimentally. In this review, after a brief theoretical description of the Born–Oppenheimer and Car–Parrinello molecular dynamics formalisms, we show how AIMD has enhanced our understanding of the properties of liquid water and its constituent ions: the proton and the hydroxide ion. Thereafter, a broad overview of the application of AIMD to other aqueous systems, such as solvated organic molecules and inorganic ions, is presented. We also briefly describe the latest theoretical developments made in AIMD, such as methods for enhanced sampling and the inclusion of nuclear quantum effects.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献