Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management

Author:

Lozada Aguilar Miguel Ángel1,Khrennikov Andrei2ORCID,Oleschko Klaudia3,de Jesús Correa María4

Affiliation:

1. Aseguramiento Tecnológico en Pemex, Exploración y Producción, Blvd. Adolfo Ruiz Cortines No. 1202, Edificio Pirámide Piso 1, Col. Fracc. Oropeza, Centro, CP 86030, Tabasco, Mexico

2. International Center for Mathematical Modelling in Physics and Cognitive Sciences, Mathematical Institute, Linnaeus University, Vaxjo 351 95, Sweden

3. Centro de Geociencias, Universidad Nacional Autonoma de Mexico (UNAM), Campus UNAM Juriquilla, Blvd. Juriquilla 3001, Queretaro, Qro., CP 76230, Mexico

4. Coordinación del Grupo Multidisciplinario de Especialistas Técnicos de Diseño de Proyectos, Suptcia de Caracterizacion de Yacimientos, Activo de Produccion Ku-Maloob-Zaap, Ed. Kaxan, Av. Contadores, Carretera Carmen Puerto Real, Cd. Del Carmen, Camp., Mexico

Abstract

The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir . Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue ‘Second quantum revolution: foundational questions’.

Funder

SENER-CONACYT-Hidrocarburos, Yacimiento-Petrolero como un Reactor Fractal

Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference69 articles.

1. A framework for dealing with uncertainty due to model structure error

2. Uncertainty in geological and hydrogeological data

3. Nikravesh M. 2003 Computational intelligence for reservoir management. In Proc. IEEE Int. Conf. on Industrial Informatics (INDIN 2003) pp. 396–401. New York NY: IEEE.

4. An intelligent oil reservoir identification approach by deploying quantum Levenberg–Marquardt neural network and rough set;Liu N;Int. J. Comput. Sci. Eng.,2011

5. Uncertain Future of Hydrogeology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metrology of weak quantum perturbations;Physical Review A;2024-03-25

2. Open Systems, Quantum Probability, and Logic for Quantum-like Modeling in Biology, Cognition, and Decision-Making;Entropy;2023-06-01

3. Ultrametric diffusion equation on energy landscape to model disease spread in hierarchic socially clustered population;Physica A: Statistical Mechanics and its Applications;2021-12

4. Generalized Fock space and contextuality;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-09-16

5. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2018-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3