Hierarchical low-rank and sparse tensor micro defects decomposition by electromagnetic thermography imaging system

Author:

Wu Tongle1,Gao Bin1ORCID,Woo Wai Lok2ORCID

Affiliation:

1. Department of Automation Engineering, University of Electronic Science and technology, Chengdu, People’s Republic of China

2. Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Abstract

With the advancement of electromagnetic induction thermography and imaging technology in non-destructive testing field, this system has significantly benefitted modern industries in fast and contactless defects detection. However, due to the limitations of front-end hardware experimental equipment and the complicated test pieces, these have brought forth new challenges to the detection process. Making use of the spatio-temporal video data captured by the thermal imaging device and linking it with advanced video processing algorithm to defects detection has become a necessary alternative way to solve these detection challenges. The extremely weak and sparse defect signal is buried in complex background with the presence of strong noise in the real experimental scene has prevented progress to be made in defects detection. In this paper, we propose a novel hierarchical low-rank and sparse tensor decomposition method to mine anomalous patterns in the induction thermography stream for defects detection. The proposed algorithm offers advantages not only in suppressing the interference of strong background and sharpens the visual features of defects, but also overcoming the problems of over- and under-sparseness suffered by similar state-of-the-art algorithms. Real-time natural defect detection experiments have been conducted to verify that the proposed algorithm is more efficient and accurate than existing algorithms in terms of visual presentations and evaluation criteria. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3