Clustering and self-organization in small-scale natural and artificial systems

Author:

Bormashenko Edward1ORCID,Fedorets Alexander A.2ORCID,Frenkel Mark1,Dombrovsky Leonid A.23ORCID,Nosonovsky Michael24ORCID

Affiliation:

1. Department of Chemical Engineering, Engineering Sciences Faculty, Ariel University, Ariel 40700, Israel

2. X-BIO Institute, University of Tyumen, 6 Volodarskogo Street, Tyumen 625003, Russia

3. Joint Institute for High Temperatures, 17A Krasnokazarmennaya Street, Moscow 111116, Russia

4. Department of Mechanical Engineering, University of Wisconsin–Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211, USA

Abstract

Physical properties of clusters, i.e. systems composed of a ‘small’ number of particles, are qualitatively different from those of infinite systems. The general approach to the problem of clustering is suggested. Clusters, as they are seen in the graphs theory, are discussed. Various physical mechanisms of clustering are reviewed. Dimensional properties of clusters are addressed. The dimensionality of clusters governs to a great extent their properties. Weakly and strongly coupled clusters are discussed. Hydrodynamic and capillary interactions giving rise to clusters formation are surveyed. Levitating droplet clusters, turbulent clusters and droplet clusters responsible for the breath-figures self-assembly are considered. Entropy factors influencing clustering are considered. Clustering in biological systems results in non-equilibrium multi-scale assembly, where at each scale, self-driven components come together by consuming energy in order to form the hierarchical structure. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.

Funder

Russian Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference81 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3