Evaluation of detectability of differential type probe using directional eddy current for fibre waviness in CFRP

Author:

Kosukegawa Hiroyuki1ORCID,Kiso Yuta12,Hashimoto Mitsuo1,Uchimoto Tetsuya13,Takagi Toshiyuki13

Affiliation:

1. Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

2. Graduate School of Engineering, Tohoku University, 6-6 Aramaki-aza, Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

3. ELyTMaX UMI 3757, CNRS – Université de Lyon – Tohoku University, International Joint Unit, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

Abstract

This paper describes the detectability of eddy current testing (ECT) using directional eddy current for detection of in-plane fibre waviness in unidirectional carbon fibre reinforced plastic (CFRP) laminate. Three different types of probes, such as circular driving, symmetrical driving and uniform driving probe, were proposed, and the waviness angle was extracted from the contour map of the ECT signal by applying a Canny filter and a Hough transform. By comparing both the waviness angle estimated by ECT and that obtained by an X-ray CT image, the standard deviation (precision) and root mean square error (accuracy) were evaluated to discuss the detectability of these probes. The directional uniform driving probe shows the best detectability and can detect fibre waviness with a waviness angle of more than 2° in unidirectional CFRP. The probe shows a root mean square error of 1.90° and a standard deviation of 4.49° between the actual waviness angle and the angle estimated by ECT. This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation and smart monitoring’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3