Affiliation:
1. School of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
2. Center for Quantum Spacetime, Sogang University, Seoul, 04107, Korea
Abstract
The electroweak monopole in the standard model, the existence, characteristic features, cosmological production and physical implications are discussed. The discovery of the Higgs particle has been thought to be the ‘final’ test of the standard model. If the standard model is correct, however, it must have the electroweak monopole as the electroweak generalization of the Dirac monopole. This means that the detection of this monopole should become the final and topological test of the standard model. If detected, it becomes the first magnetically charged and stable topological elementary particle in the history of physics. Moreover, it has deep implications in physics. In cosmology, it could generate the primordial magnetic black holes which could explain the dark matter, become the seed of the large-scale structures of the universe, and be the source of the intergalactic magnetic field. Just as importantly, it could generate the hitherto unknown magnetic current which could have huge practical applications. Furthermore, the existence of the monopole requires us to reformulate the perturbative expansion in quantum field theory. This makes the detection of the electroweak monopole a most urgent issue. We discuss useful tips for the MoEDAL detector at LHC and similar experiments on how to detect the monopole successfully.
This article is part of a discussion meeting issue ‘Topological avatars of new physics’.
Funder
National Research Foundation of Korea
Ministry of Education
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献