Characterizing the complexity of brain and mind networks

Author:

Zamora-López Gorka12,Russo Eleonora3,Gleiser Pablo M.4,Zhou Changsong56,Kurths Jürgen27

Affiliation:

1. Bernstein Center for Computational Neuroscience, Berlin, Germany

2. Department of Physics, Humboldt University, Berlin, Germany

3. SISSA – Cognitive Neuroscience, Trieste, Italy

4. Centro Atómico Bariloche, Instituto Balseiro, Bariloche, Argentina

5. The Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong, China

6. Department of Physics, Center for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China

7. Potsdam Institute for Climate Impact Research, Potsdam, Germany

Abstract

Recent studies of brain connectivity and language with methods of complex networks have revealed common features of organization. These observations open a window to better understand the intrinsic relationship between the brain and the mind by studying how information is either physically stored or mentally represented. In this paper, we review some of the results in both brain and linguistic networks, and we illustrate how modelling approaches can serve to comprehend the relationship between the structure of the brain and its function. On the one hand, we show that brain and neural networks display dynamical behaviour with optimal complexity in terms of a balance between their capacity to simultaneously segregate and integrate information. On the other hand, we show how principles of neural organization can be implemented into models of memory storage and recognition to reproduce spontaneous transitions between memories, resembling phenomena of memory association studied in psycholinguistic experiments.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3