The fluvial record of climate change

Author:

Macklin M. G.1,Lewin J.1,Woodward J. C.2

Affiliation:

1. Institute of Geography and Earth Sciences, Aberystwyth University, Penglais, Ceredigion SY23 3DB, UK

2. Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

Fluvial landforms and sediments can be used to reconstruct past hydrological conditions over different time scales once allowance has been made for tectonic, base-level and human complications. Field stratigraphic evidence is explored here at three time scales: the later Pleistocene, the Holocene, and the historical and instrumental period. New data from a range of field studies demonstrate that Croll–Milankovitch forcing, Dansgaard–Oeschger and Heinrich events, enhanced monsoon circulation, millennial- to centennial-scale climate variability within the Holocene (probably associated with solar forcing and deep ocean circulation) and flood-event variability in recent centuries can all be discerned in the fluvial record. Although very significant advances have been made in river system and climate change research in recent years, the potential of fluvial palaeohydrology has yet to be fully realized, to the detriment of climatology, public health, resource management and river engineering.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3