The origin of the elements: a century of progress

Author:

Johnson Jennifer A.1ORCID,Fields Brian D.2,Thompson Todd A.1

Affiliation:

1. Department of Astronomy and Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210, USA

2. Departments of Astronomy and of Physics, University of Illinois, Urbana, IL 61801, USA

Abstract

This review assesses the current state of knowledge of how the elements were produced in the Big Bang, in stellar lives and deaths, and by interactions in interstellar gas. We begin with statements of fact and discuss the evidence that convinced astronomers that the Sun is fusing hydrogen, that low-mass stars produce heavy elements through neutron capture, that massive stars can explode as supernovae and that supernovae of all types produce new elements. Nucleosynthesis in the Big Bang, through cosmic ray spallation, and in exploding white dwarfs is only ranked below the above facts in certainty because the evidence, while overwhelming, is so far circumstantial. Next, we highlight the flaws in our current understanding of the predictions for lithium production in the Big Bang and/or its destruction in stars and for the production of the elements with atomic number Z 45 . While the theory that neutron star mergers produce elements through neutron-capture has powerful circumstantial evidence, we are unconvinced that they produce all of the elements past nickel. Also in dispute is the exact mechanism or mechanisms that cause the white dwarfs to explode. It is difficult to determine the origin of rare isotopes because signatures of their production are weak. We are uncertain about the production sites of some lithium and nitrogen isotopes and proton-rich heavy nuclei. Finally, Betelgeuse is probably not the next star to become a supernovae in the Milky Way, in part because Betelgeuse may collapse directly to a black hole instead. The accumulated evidence in this review shows that we understand the major production sites for the elements, but islands of uncertainty in the periodic table exist. Resolving these uncertainties requires in particular understanding explosive events with compact objects and understanding the nature of the first stars and is therefore primed for new discoveries in the next decades. This article is part of the theme issue ‘Mendeleev and the periodic table’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference170 articles.

1. Synthesis of the Elements in Stars

2. Abundances of the elements: Meteoritic and solar

3. The internal constitution of the stars;Eddington AS;The Observatory,1920

4. The Source of Stellar Energy

5. Payne CH. 1925 Ph.D. Thesis. Stellar Atmospheres; a contribution to the observational study of high temperature in the reversing layers of stars.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3