Integrating blue-green and grey infrastructure through an adaptation pathways approach to surface water flooding

Author:

Kapetas Leon1ORCID,Fenner Richard1ORCID

Affiliation:

1. Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK

Abstract

A range of solutions to future flood risk are available ranging from blue-green infrastructure (BGI) as commonly incorporated in sustainable drainage systems (SuDS) to traditional grey infrastructure (e.g. pipe networks, storage tanks, flood walls). Each offers a different profile with respect to costs, flexibility of implementation and the ability to deliver a range of wider benefits beyond their flood protection function. An important question that must be addressed when considering these approaches is what is the most suitable mix of grey and blue-green solutions to urban flooding at any location and at any future time? This paper uses an adaptation pathways approach to compare a range of alternative options to deal with current and expected future flood risk in part of a London borough. Solutions considered separately and in combination include grey pipe expansion, bioretention cells, permeable pavements and storage ponds. A methodological framework combines a range of existing tools to develop, assess and characterize each pathway, including a storm water management model (SWMM), a SuDs opportunity selection tool, an adaptation pathway generator and the CIRIA B£ST tool for monetizing multiple benefits. Climate change is represented by the UK Water Industry Research method for establishing future rainfall intensities for sewer and BGI design. The results showed that by extending the way in which adaptation pathways are compared and evaluated through the wider consideration of multiple benefits there is a trade-off between deferring interventions until they are needed for flood risk mitigation and delivering the multiple benefits associated with interventions so that performance thresholds do not need to be met before introducing new options. The relative contribution of each option's capital and operation and maintenance costs has implications on when the option is implemented as well as the rate of implementation. The monetization of the multiple benefits associated with each pathway shows that their economic co-evaluation alongside infrastructure costs can change the preference for one pathway over another. This article is part of the theme issue ‘Urban flood resilience’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3