On the hydrodynamics of crystal clustering

Author:

McIntire Michael Z.1ORCID,Bergantz George W.1ORCID,Schleicher Jillian M.1

Affiliation:

1. Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195, USA

Abstract

The formation of crystal clusters may influence the mechanical behaviour of magmas. However, whether clusters form largely from physical contact in a mobile state during sedimentation and stirring, or require residence in a crystal mush, is not well understood. In this paper, we use discrete-element fluid dynamics numerical experiments to illuminate the potential for clustering from both sedimentation and open-system mixing in a model olivine basalt reservoir for three different initial solid volume per cents. Crystal clustering is quantified using both bulk measures of clustering such as the R index and Ripley's L(r) and g(r) functions and with a variable scale technique called Voronoi tessellations, which also provide orientation data. Probability density functions for the likelihood of crystal clustering under freely circulating conditions indicate that there is nearly an equal likelihood for clustering and non-clustered textures in natural examples. A crystal cargo in igneous rock suites exhibiting a dominance of crystal clusters may be largely sampling magmatic materials formed in a crystal mush. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.

Funder

National Science Foundation

National Science Foundation Extreme Science and Engineering Discovery Environment

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3