Affiliation:
1. Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195, USA
Abstract
The formation of crystal clusters may influence the mechanical behaviour of magmas. However, whether clusters form largely from physical contact in a mobile state during sedimentation and stirring, or require residence in a crystal mush, is not well understood. In this paper, we use discrete-element fluid dynamics numerical experiments to illuminate the potential for clustering from both sedimentation and open-system mixing in a model olivine basalt reservoir for three different initial solid volume per cents. Crystal clustering is quantified using both bulk measures of clustering such as the
R
index and Ripley's
L(r)
and
g(r)
functions and with a variable scale technique called Voronoi tessellations, which also provide orientation data. Probability density functions for the likelihood of crystal clustering under freely circulating conditions indicate that there is nearly an equal likelihood for clustering and non-clustered textures in natural examples. A crystal cargo in igneous rock suites exhibiting a dominance of crystal clusters may be largely sampling magmatic materials formed in a crystal mush.
This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.
Funder
National Science Foundation
National Science Foundation Extreme Science and Engineering Discovery Environment
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献