Tidal current power effects on nearby sandbanks: a case study in the Race of Alderney

Author:

Blunden Luke S.1ORCID,Haynes Stephen G.1,Bahaj AbuBakr S.1ORCID

Affiliation:

1. Sustainable Energy Research Group, Energy and Climate Change Division, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO16 7QF, UK

Abstract

A validated numerical model of tidal flows and sediment transport around the Alderney South Banks was used to investigate the potential effects of large (300 MW) tidal turbine arrays at different locations in Alderney territorial waters. Two methods were used, firstly looking at hydrodynamic changes only and secondly modelling sediment transport over a non-erodible bed. The baseline hydrodynamic model was validated relative to ADCP velocity data collected in the immediate vicinity of the sandbank. Real-world sand transport rates were inferred from sand-wave migrations and agree favourably with sediment transport residuals calculated from model outputs. Outputs from the sediment model reproduced realistic morphological behaviours over the bank. Seventeen different locations were considered; most did not result in significant hydrodynamic changes over the South Banks; however, three array locations were singled out as requiring extra caution if development were to occur. The results provide a case for optimizing the array locations for twin objectives of maximizing array power and minimizing impacts on the sandbanks. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.

Funder

Engineering and Physical Sciences Research Council

British Council

Alderney Commission for Renewable Energy

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3