Quantum measurements and contextuality

Author:

Griffiths Robert B.1ORCID

Affiliation:

1. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

In quantum physics, the term ‘contextual’ can be used in more than one way. One usage, here called ‘Bell contextual’ since the idea goes back to Bell, is that if A , B and C are three quantum observables, with A compatible (i.e. commuting) with B and also with C , whereas B and C are incompatible, a measurement of A might yield a different result (indicating that quantum mechanics is contextual) depending upon whether A is measured along with B (the { A ,  B } context) or with C (the { A ,  C } context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell non-contextual: the outcome of a particular A measurement when A is measured along with B would have been exactly the same if A had, instead, been measured along with C . A different definition, here called ‘globally (non)contextual’ refers to whether or not there is (non-contextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus, has a tensor product structure, a fact sometimes overlooked. This article is part of the theme issue ‘Contextuality and probability in quantum mechanics and beyond’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference20 articles.

1. Contextual Fraction as a Measure of Contextuality

2. The consistent histories approach to quantum mechanics;Griffiths RB;Stanford Encycl. Phil.,2019

3. EPR, Bell, and quantum locality

4. Consistent quantum measurements

5. What quantum measurements measure

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3