Solute hydrogen and hydride phase implications on the plasticity of zirconium and titanium alloys: a review and some recent advances

Author:

Conforto E.1,Guillot I.2,Feaugas X.1ORCID

Affiliation:

1. LaSIE UMR CNRS 7356, University of La Rochelle, Av. Michel Crépeau, 17042 La Rochelle, France

2. ICMPE (UMR 7182), CNRS, UPEC, Paris East University (UPE), 94320 Thiais, France

Abstract

In this contribution, we propose a review of the possible implications of hydrogen on mechanical behaviour of Zr and Ti alloys with emphasis on the mechanisms of plasticity and strain hardening. Recent advances on the impact of oxygen and hydrogen on the activation volume show that oxygen content hinders creep but hydrogen partially screens this effect. Both aspects are discussed in terms of a locking–unlocking model of the screw dislocation mobility in prismatic slip. Additionally, possible extension of this behaviour is suggested for the pyramidal slip. The low hydrogen solubility in both Zr and Ti leads in many cases to hydride precipitation. The nature of these phases depends on the hydrogen content and can show crystallographic orientation relationships with the hexagonal compact structure of the alloys. Some advances on the thermal stability of these phases are illustrated and discussed in relation with the deepening of the misfit dislocations. Under tensile loading, we showed that hydrides enhance the hardening process in relation with internal stress due to strain incompatibilities between the Zr and Ti matrix and hydride phases. Different plastic yielding processes of hydrides were identified, which progressively reduce these strain incompatibilities. This article is part of the themed issue ‘The challenges of hydrogen and metals’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3