Some variance reduction methods for numerical stochastic homogenization

Author:

Blanc X.1,Le Bris C.2,Legoll F.2

Affiliation:

1. Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, 75205 Paris, France

2. Ecole des Ponts and INRIA, 6 and 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2, France

Abstract

We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here.

Funder

EOARD

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal artificial boundary conditions based on second-order correctors for three dimensional random elliptic media;Communications in Partial Differential Equations;2024-07-17

2. A variance reduction strategy for numerical random homogenization based on the equivalent inclusion method;Computer Methods in Applied Mechanics and Engineering;2023-12

3. Numerical Approaches;Homogenization Theory for Multiscale Problems;2022-12-23

4. Multi-scale modeling of the time-harmonic scattering from a thin layer of randomly distributed small particles;2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI);2022-07-10

5. An offline-online strategy for multiscale problems with random defects;ESAIM: Mathematical Modelling and Numerical Analysis;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3