Auroral emissions from Uranus and Neptune

Author:

Lamy L.12ORCID

Affiliation:

1. LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France

2. LAM, Pythéas, Aix Marseille Université, CNRS, CNES, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France

Abstract

Uranus and Neptune possess highly tilted/offset magnetic fields whose interaction with the solar wind shapes unique twin asymmetric, highly dynamical, magnetospheres. These radiate complex auroral emissions, both reminiscent of those observed at the other planets and unique to the ice giants, which have been detected at radio and ultraviolet (UV) wavelengths to date. Our current knowledge of these radiations, which probe fundamental planetary properties (magnetic field, rotation period, magnetospheric processes, etc.), still mostly relies on Voyager 2 radio, UV and in situ measurements, when the spacecraft flew by each planet in the 1980s. These pioneering observations were, however, limited in time and sampled specific solar wind/magnetosphere configurations, which significantly vary at various timescales down to a fraction of a planetary rotation. Since then, despite repeated Earth-based observations at similar and other wavelengths, only the Uranian UV aurorae have been re-observed at scarce occasions by the Hubble Space Telescope. These observations revealed auroral features radically different from those seen by Voyager 2, diagnosing yet another solar wind/magnetosphere configuration. Perspectives for the in-depth study of the Uranian and Neptunian auroral processes, with implications for exoplanets, include follow-up remote Earth-based observations and future orbital exploration of one or both ice giant planetary systems. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.

Funder

Centre National d'Etudes Spatiales

Centre National de la Recherche Scientifique

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3