Particle physics experiments based on the AWAKE acceleration scheme

Author:

Wing M.1ORCID

Affiliation:

1. Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, UK

Abstract

New particle acceleration schemes open up exciting opportunities, potentially providing more compact or higher-energy accelerators. The AWAKE experiment at CERN is currently taking data to establish the method of proton-driven plasma wakefield acceleration. A second phase aims to demonstrate that bunches of about 10 9 electrons can be accelerated to high energy, preserving emittance and that the process is scalable with length. With this, an electron beam of O (50 GeV) could be available for new fixed-target or beam-dump experiments searching for the hidden sector, like dark photons. The rate of electrons on target could be increased by a factor of more than 1000 compared to that currently available, leading to a corresponding increase in sensitivity to new physics. Such a beam could also be brought into collision with a high-power laser and thereby probe the completely unmeasured region of strong fields at values of the Schwinger critical field. An ultimate goal is to produce an electron beam of O (3 TeV) and collide with an Large Hadron Collider proton beam. This very high-energy electron–proton collider would probe a new regime in which the structure of matter is completely unknown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.

Funder

Leverhulme Trust Research

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference63 articles.

1. Partial-symmetries of weak interactions

2. A Model of Leptons

3. Salam A. 1968 Weak and electromagnetic interactions. In Proc. of the Eighth Nobel Symposium Elementary Particle Physics: Relativistic Groups and Analyticity (eds Almquvist Wiksell). p. 367.

4. Regularization and renormalization of gauge fields

5. Broken Symmetry and the Mass of Gauge Vector Mesons

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3