Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems

Author:

Anzt H.1,Quintana-Ortí E. S.2

Affiliation:

1. Innovative Computing Laboratory (ICL), University of Tennessee at Knoxville, Knoxville, TN 37996, USA

2. Departamento de Ingeniería y Ciencia de Computadores, Universidad Jaume I, Castellón, Spain

Abstract

While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference27 articles.

1. Ashby S et al. 2010 The opportunities and challenges of exascale computing. Summary report of the Advanced Scientific Computing Advisory Committee (ASCAC) subcommittee.

2. Kogge P et al. 2008 ExaScale computing study: technology challenges in achieving exascale systems. Technical report TR-2008-13. Notre Dame IN: University of Notre Dame. See http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.6676.

3. The International Exascale Software Project roadmap

4. Duranton M Black-Schaffer D De Bosschere K& Maebe J. 2013 The HiPEAC vision for advanced computing in horizon 2020. HiPEAC High-Performance Embedded Architecture and Compilation. See http://hdl.handle.net/1854/LU-3234355.

5. Dongarra J& Heroux MA. 2013 Toward a new metric for ranking high performance computing systems. Sandia report SAND2013-4744 Sandia National Laboratories.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed and Multi-Precision SpMV for GPUs with Row-wise Precision Selection;2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2022-11

2. The ICARUS White Paper: A Scalable, Energy-Efficient, Solar-Powered HPC Center Based on Low Power GPUs;Euro-Par 2016: Parallel Processing Workshops;2017

3. Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors;Computer Science - Research and Development;2016-08-20

4. Experiences in autotuning matrix multiplication for energy minimization on GPUs;Concurrency and Computation: Practice and Experience;2015-05-20

5. Adaptive precision solvers for sparse linear systems;Proceedings of the 3rd International Workshop on Energy Efficient Supercomputing - E2SC '15;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3