Affiliation:
1. School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Abstract
The mathematical study of vortices began with Herman von Helmholtz's pioneering study in 1858. It was pursued vigorously over the next two decades, largely by British physicists and mathematicians, in two contexts: Maxwell's vortex analogy for the electromagnetic field and William Thomson's (Lord Kelvin) theory that atoms were vortex rings in an all-pervading ether. By the time of Maxwell's death in 1879, the basic laws of vortices in a perfect fluid in three-dimensional Euclidean space had been established, as had their importance to physics. Early vortex studies were embedded in a web of issues spanning the fields we now know as ‘mathematics’ and ‘physics’—fields which had not yet become institutionally distinct disciplines but overlapped. This paper investigates the conceptual issues with ideas of force, matter, and space, that underlay mechanics and led to vortex models being an attractive proposition for British physicists, and how these issues played out in the mathematics of vortices, paying particular attention to problems around continuity. It concludes that while they made valuable contributions to hydrodynamics and the nascent field of topology, the British ultimately failed in their more physical objectives.
This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献