SalvageDNN: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping

Author:

Abdullah Hanif Muhammad1,Shafique Muhammad1ORCID

Affiliation:

1. Technische Universität Wien (TU Wien), Vienna, Austria

Abstract

Deep neural networks (DNNs) have proliferated in most of the application domains that involve data processing, predictive analysis and knowledge inference. Alongside the need for developing highly performance-efficient DNN accelerators, there is an utmost need to improve the yield of the manufacturing process in order to reduce the per unit cost of the DNN accelerators. To this end, we present ‘SalvageDNN’, a methodology to enable reliable execution of DNNs on the hardware accelerators with permanent faults (typically due to imperfect manufacturing processes). It employs a fault-aware mapping of different parts of a given DNN on the hardware accelerator (subjected to faults) by leveraging the saliency of the DNN parameters and the fault map of the underlying processing hardware. We also present novel modifications in a systolic array design to further improve the yield of the accelerators while ensuring reliable DNN execution using ‘SalvageDNN’ and negligible overheads in terms of area, power/energy and performance. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference29 articles.

1. Deep learning

2. Efficient Processing of Deep Neural Networks: A Tutorial and Survey

3. Jouppi NP et al. 2017 In-datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual Int. Symp. Computer Architecture (ISCA) Toronto ON Canada 24–28 June 2017 pp. 1–12. New York NY: ACM.

4. Hanif MA Putra RVW Tanvir M Hafiz R Rehman S Shafique M. 2018 Mpna: a massively-parallel neural array accelerator with dataflow optimization for convolutional neural networks. (http://arxiv.org/abs/1810.12910)

5. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3