Stabilizing a homoclinic stripe

Author:

Kolokolnikov Theodore1ORCID,Ward Michael2,Tzou Justin3,Wei Juncheng2

Affiliation:

1. Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada

2. Department of Mathematics, University of British Columbia, Vancouver, Canada

3. Department of Mathematics, Macquarie University, Sydney, Australia

Abstract

For a large class of reaction–diffusion systems with large diffusivity ratio, it is well known that a two-dimensional stripe (whose cross-section is a one-dimensional homoclinic spike) is unstable and breaks up into spots. Here, we study two effects that can stabilize such a homoclinic stripe. First, we consider the addition of anisotropy to the model. For the Schnakenberg model, we show that (an infinite) stripe can be stabilized if the fast-diffusing variable (substrate) is sufficiently anisotropic. Two types of instability thresholds are derived: zigzag (or bending) and break-up instabilities. The instability boundaries subdivide parameter space into three distinct zones: stable stripe, unstable stripe due to bending and unstable due to break-up instability. Numerical experiments indicate that the break-up instability is supercritical leading to a ‘spotted-stripe’ solution. Finally, we perform a similar analysis for the Klausmeier model of vegetation patterns on a steep hill, and examine transition from spots to stripes. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.

Funder

NSERC, Canada

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3