Unconventional high- T c superconductivity in fullerides

Author:

Takabayashi Yasuhiro,Prassides Kosmas

Abstract

A 3 C 60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, T c . However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter—the overlap between the outer wave functions of the constituent molecules—is controlled by the C 60 3− molecular electronic structure via the on-molecule Jahn–Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott–Jahn–Teller state through chemical or physical pressurization yields an unconventional Jahn–Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen–Cooper–Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn–Teller and Fermi liquid metal when the Jahn–Teller distortion melts. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.

Funder

‘World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials’, Ministry of Education, Culture, Sports, Science and Technology of Japan.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3