Applying an iterative method numerically to solve n × n matrix Wiener–Hopf equations with exponential factors

Author:

Priddin Matthew J.1ORCID,Kisil Anastasia V.2,Ayton Lorna J.1ORCID

Affiliation:

1. DAMTP, University of Cambridge, Cambridge CB3 0WA, UK

2. Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK

Abstract

This paper presents a generalization of a recent iterative approach to solving a class of 2 × 2 matrix Wiener–Hopf equations involving exponential factors. We extend the method to square matrices of arbitrary dimension n , as arise in mixed boundary value problems with n junctions. To demonstrate the method, we consider the classical problem of scattering a plane wave by a set of collinear plates. The results are compared to other known methods. We describe an effective implementation using a spectral method to compute the required Cauchy transforms. The approach is ideally suited to obtaining far-field directivity patterns of utility to applications. Convergence in iteration is fastest for large wavenumbers, but remains practical at modest wavenumbers to achieve a high degree of accuracy. This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 2)’.

Funder

EPSRC DTP

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffraction by a set of collinear cracks on a square lattice: An iterative Wiener–Hopf method;Wave Motion;2024-08

2. Turbomachinery Noise Review;International Journal of Turbomachinery, Propulsion and Power;2024-03-13

3. Higher Order Trust Ranking of LinkedIn Accounts with Iterative Matrix Methods;International Journal on Artificial Intelligence Tools;2022-11

4. The Wiener–Hopf technique, its generalizations and applications: constructive and approximate methods;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-10

5. Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application;Progress in Aerospace Sciences;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3