Rational extended thermodynamics of dense polyatomic gases incorporating molecular rotation and vibration

Author:

Arima Takashi1,Ruggeri Tommaso2ORCID,Sugiyama Masaru3

Affiliation:

1. National Institute of Technology, Tomakomai College, Tomakomai, Japan

2. Department of Mathematics and Alma Mater Research Center on Applied Mathematics AM2, University of Bologna, Bologna, Italy

3. Nagoya Institute of Technology, Nagoya, Japan

Abstract

The paper aims to construct a rational extended thermodynamics (RET) theory of dense polyatomic gases by taking into account the experimental evidence that the relaxation time of molecular rotation and that of molecular vibration are quite different from each other. For simplicity, we focus on gases with only one dissipative process due to bulk viscosity. In fact, in some polyatomic gases, the effect of bulk viscosity is much larger than that of shear viscosity and heat conductivity. The present theory includes the previous RET theory of dense gases with six fields as a particular case, and it also includes the RET theory of rarefied polyatomic gases with seven fields in the rarefied-gas limit. The closure is carried out by using the universal principles, that is, Galilean invariance and objectivity, entropy principle, and thermodynamic stability (convexity of entropy), where the duality principle connecting rarefied gases to dense gases also plays an important role. A detailed discussion is devoted to the expression of the production terms in the system of balance equations. As typical examples, we study a gas with virial equations of state and a van der Waals gas. Lastly the dispersion relation of a linear wave is derived, and its comparison with experimental data is made. This article is part of the theme issue ‘Fundamental aspects of nonequilibrium thermodynamics’.

Funder

JSPS

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference52 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3