Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain–computer interface applications

Author:

Hemakom Apit,Goverdovsky Valentin,Looney David,Mandic Danilo P.

Abstract

An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain–computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate.

Funder

Royal Thai Government

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference37 articles.

1. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study

2. A Brain–Computer Interface-Based Vehicle Destination Selection System Using P300 and SSVEP Signals

3. Games, Gameplay, and BCI: The State of the Art

4. Dhital A Banic AU. 2013 Navigation in a virtual environment by dichotic listening: simultaneous audio cues for user-directed BCI classification. In Proc. IEEE Virtual Reality Lake Buena Vista FL 18–20 March 2013 pp. 71–72. (doi:10.1109/VR.2013.6549368)

5. A Telepresence Mobile Robot Controlled With a Noninvasive Brain–Computer Interface

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3