Are meteotsunamis an underrated hazard?

Author:

Pattiaratchi Charitha B.12ORCID,Wijeratne E. M. S.12ORCID

Affiliation:

1. School of Civil, Environmental and Mining Engineering, The UWA Oceans Institute, The University of Western Australia, Crawley 6009, Australia

2. Bushfire and Natural Hazards Cooperative Research Centre, Melbourne, Australia

Abstract

Meteotsunamis are generated by meteorological events, particularly moving pressure disturbances due to squalls, thunderstorms, frontal passages and atmospheric gravity waves. Relatively small initial sea-level perturbations, of the order of a few centimetres, can increase significantly through multi-resonant phenomena to create destructive events through the superposition of different factors. The global occurrence of meteotsunamis and the different resonance phenomena leading to amplification of meteotsunamis are reviewed. Results from idealized numerical modelling and field measurements from southwest Australia are presented to highlight the relative importance of the different processes. It is shown that the main influence that leads to amplification of the initial disturbance is due to wave shoaling and topographic resonance. Although meteotsunamis are not catastrophic to the extent of major seismically induced basin-scale events, the temporal and spatial occurrence of meteotsunamis are higher than those of seismic tsunamis as the atmospheric disturbances responsible for the generation of meteotsunamis are more common. High-energy events occur only for very specific combinations of resonant effects. The rareness of such combinations is perhaps the main reason why destructive meteotsunamis are exceptional and observed only at a limited number of sites globally.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3