Crustal evolution and mantle dynamics through Earth history

Author:

Korenaga Jun1ORCID

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA

Abstract

Resolving the modes of mantle convection through Earth history, i.e. when plate tectonics started and what kind of mantle dynamics reigned before, is essential to the understanding of the evolution of the whole Earth system, because plate tectonics influences almost all aspects of modern geological processes. This is a challenging problem because plate tectonics continuously rejuvenates Earth's surface on a time scale of about 100 Myr, destroying evidence for its past operation. It thus becomes essential to exploit indirect evidence preserved in the buoyant continental crust, part of which has survived over billions of years. This contribution starts with an in-depth review of existing models for continental growth. Growth models proposed so far can be categorized into three types: crust-based, mantle-based and other less direct inferences, and the first two types are particularly important as their difference reflects the extent of crustal recycling, which can be related to subduction. Then, a theoretical basis for a change in the mode of mantle convection in the Precambrian is reviewed, along with a critical appraisal of some popular notions for early Earth dynamics. By combining available geological and geochemical observations with geodynamical considerations, a tentative hypothesis is presented for the evolution of mantle dynamics and its relation to surface environment; the early onset of plate tectonics and gradual mantle hydration are responsible not only for the formation of continental crust but also for its preservation as well as its emergence above sea level. Our current understanding of various material properties and elementary processes is still too premature to build a testable, quantitative model for this hypothesis, but such modelling efforts could potentially transform the nature of the data-starved early Earth research by quantifying the extent of preservation bias. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics’.

Funder

US National Aeronautics and Space Administration through the NASA Astrobiology Institute

Science Mission Directorate and by the US National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3