Affiliation:
1. Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA
Abstract
Resolving the modes of mantle convection through Earth history, i.e. when plate tectonics started and what kind of mantle dynamics reigned before, is essential to the understanding of the evolution of the whole Earth system, because plate tectonics influences almost all aspects of modern geological processes. This is a challenging problem because plate tectonics continuously rejuvenates Earth's surface on a time scale of about 100 Myr, destroying evidence for its past operation. It thus becomes essential to exploit indirect evidence preserved in the buoyant continental crust, part of which has survived over billions of years. This contribution starts with an in-depth review of existing models for continental growth. Growth models proposed so far can be categorized into three types: crust-based, mantle-based and other less direct inferences, and the first two types are particularly important as their difference reflects the extent of crustal recycling, which can be related to subduction. Then, a theoretical basis for a change in the mode of mantle convection in the Precambrian is reviewed, along with a critical appraisal of some popular notions for early Earth dynamics. By combining available geological and geochemical observations with geodynamical considerations, a tentative hypothesis is presented for the evolution of mantle dynamics and its relation to surface environment; the early onset of plate tectonics and gradual mantle hydration are responsible not only for the formation of continental crust but also for its preservation as well as its emergence above sea level. Our current understanding of various material properties and elementary processes is still too premature to build a testable, quantitative model for this hypothesis, but such modelling efforts could potentially transform the nature of the data-starved early Earth research by quantifying the extent of preservation bias.
This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics’.
Funder
US National Aeronautics and Space Administration through the NASA Astrobiology Institute
Science Mission Directorate and by the US National Science Foundation
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献