Singular fibres of the Gelfand–Cetlin system on MANI( n )*

Author:

Bouloc D.1ORCID,Miranda E.23ORCID,Zung N.T.1

Affiliation:

1. Institut de Mathématiques de Toulouse, UMR5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France

2. Laboratory of Geometry and Dynamical Systems-EPSEB, Department of Mathematics-UPC and BGSMath, Universitat Politècnica de Catalunya, Avinguda del Doctor Marañon 44-50, 08028 Barcelona, Spain

3. IMCCE, CNRS-UMR8028, Observatoire de Paris, PSL University, Sorbonne Université, 77 Avenue Denfert-Rochereau, 75014 Paris, France

Abstract

In this paper, we show that every singular fibre of the Gelfand–Cetlin system on co-adjoint orbits of unitary groups is a smooth isotropic submanifold which is diffeomorphic to a two-stage quotient of a compact Lie group by free actions of two other compact Lie groups. In many cases, these singular fibres can be shown to be homogeneous spaces or even diffeomorphic to compact Lie groups. We also give a combinatorial formula for computing the dimensions of all singular fibres, and give a detailed description of these singular fibres in many cases, including the so-called (multi-)diamond singularities. These (multi-)diamond singular fibres are degenerate for the Gelfand–Cetlin system, but they are Lagrangian submanifolds diffeomorphic to direct products of special unitary groups and tori. Our methods of study are based on different ideas involving complex ellipsoids, Lie groupoids and also general ideas coming from the theory of singularities of integrable Hamiltonian systems. This article is part of the theme issue ‘Finite dimensional integrable systems: new trends and methods’.

Funder

Catalan Institution for Research and Advanced Studies

MINECO/FEDER

AGAUR

Center of Geometry and Physics

IBS

Republic of Korea

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference28 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3