Periodic waves of the Lugiato–Lefever equation at the onset of Turing instability

Author:

Delcey Lucie1,Haragus Mariana2ORCID

Affiliation:

1. Laboratoire de mathématiques de Besançon, Univ. Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France

2. FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon cedex, France

Abstract

We study the existence and the stability of periodic steady waves for a nonlinear model, the Lugiato–Lefever equation, arising in optics. Starting from a detailed description of the stability properties of constant solutions, we then focus on the periodic steady waves which bifurcate at the onset of Turing instability. Using a centre manifold reduction, we analyse these Turing bifurcations, and prove the existence of periodic steady waves. This approach also allows us to conclude on the nonlinear orbital stability of these waves for co-periodic perturbations, i.e. for periodic perturbations which have the same period as the wave. This stability result is completed by a spectral stability result for general bounded perturbations. In particular, this spectral analysis shows that instabilities are always due to co-periodic perturbations. This article is part of the theme issue ‘Stability of nonlinear waves and patterns and related topics’.

Funder

Franche-Comté region and the Labex ACTION programme

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3