Material efficiency in a multi-material world

Author:

Lifset Reid1,Eckelman Matthew2

Affiliation:

1. School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA

2. Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA

Abstract

Material efficiency—using less of a material to make a product or supply a service—is gaining attention as a means for accomplishing important environmental goals. The ultimate goal of material efficiency is not to use less physical material but to reduce the impacts associated with its use. This article examines the concept and definition of material efficiency and argues that for it to be an effective strategy it must confront the challenges of operating in a multi-material world, providing guidance when materials are used together and when they compete. A series of conceptions of material efficiency are described, starting with mass-based formulations and expanding to consider multiple resources in the supply chain of a single material, and then to multiple resources in the supply chains of multiple materials used together, and further to multiple environmental impacts. The conception of material efficiency is further broadened by considering material choice, exploring the technical and economic effects both of using less material and of materials competition. Finally, this entire materials-based techno-economic system is considered with respect to the impact of complex policies and political forces. The overall goal here is to show how the concept of material efficiency when faced with more expansive—and yet directly relevant—definitional boundaries is forced to confront analytical challenges that are both familiar and difficult in life cycle assessment and product-based approaches.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference50 articles.

1. Material efficiency: A white paper

2. Organisation for Economic Cooperation and Development. 2011 Resource productivity in the G8 and the OECD: a report in the framework of the Kobe 3R Action Plan. Organisation for Economic Cooperation and Development Paris.

3. Cabinet Office Performance and Innovation Unit. 2001 Resource productivity: making more with less. Cabinet Office Performance and Innovation Unit London UK.

4. Summary paper 2: summary of SMM linkages;Brady K;OECD Global Forum on the Environment Focusing on Sustainable Materials Management, Mechelen, Belgium, 25–27 October 2010.,2010

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3